inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Zhang,^{a,b}* Liang Fang^b and Run-Zhang Yuan^b

^aState Key Lab. of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China, and ^bInstitut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Str. 1, 52056 Aachen, Germany

Correspondence e-mail: huizhangskl@yahoo.com

Key indicators

Single-crystal X-ray study T = 223 KMean σ (I–Sb) = 0.001 Å H-atom completeness 0% R factor = 0.041 wR factor = 0.089 Data-to-parameter ratio = 46.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triammonium nonaiododiantimonate(III), (NH₄)₃[Sb₂I₉]

The crystal structure of the title compound, $(NH_4)_3[Sb_2I_9]$, which crystallizes in the monoclinic space group $P2_1/n$, resembles that of hexagonal $Cs_3[Sb_2I_9]$, which crystallizes in space group $P\overline{3}m1$. The title compound consists of double layers parallel to (001). Each layer is made up of distorted corner-sharing SbI₆ octahedra. One-third of the ammonium cations reside within six-membered rings formed by cornersharing SbI₆ octahedra within the layers. The other ammonium cations are situated within three-membered rings built from corner-sharing SbI₆ octahedra near the edges of the layers.

Comment

While attempting to prepare antimony cyanamide from cyanamide and Sb_2O_3 in an HI solution to dissolve the latter, cyanamide decomposed into ammonia and we obtained crystals of $(NH_4)_3[Sb_2I_9]$ instead.

The structure of the title compound is shown in Fig. 1 in a view approximately along the *b* axis. It consists of double layers parallel to (001). Each layer is built up of SbI₆ octahedra by corner-sharing. There are two crystallographically independent Sb atoms, each octahedrally coordinated by six I atoms (Fig. 2). The SbI₆ octahedra are considerably distorted, displaying Sb–I bond lengths from 2.8422 (9) to 3.2211 (9) Å. The Sb(1)I₆ octahedron corner-shares with two Sb(1)I₆ octahedron corner-shares with two Sb(1)I₆ octahedron corner-shares with two Sb(1)I₆ octahedron or Sb(2)I₆ octahedra and one Sb(2)I₆ octahedron. This arrangement leads to the formation of six-membered rings (Fig. 3) within the layers, in which one-third of the ammonium cations (N1) reside. N2 and N3 are

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Zhang, Fang and Yuan • (NH₄)₃[Sb₂I₉]

i70

Received 11 March 2005 Accepted 8 April 2005 Online 16 April 2005

5949 independent reflections

 $R_{\rm int} = 0.067$

 $\theta_{\rm max} = 28.4^{\circ}$

 $h = -19 \rightarrow 19$

 $k = -10 \rightarrow 10$

 $l = -27 \rightarrow 27$

4013 reflections with $I > 2\sigma(I)$

Figure 2

Two corner-sharing SbI₆ octahedra with surrounding N atoms. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x - \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Figure 3

Projection of the structure along [001], showing the six-membered rings built of SbI₆ octahedra.

situated inside three-membered rings built of corner-sharing SbI₆ octahedra near the edges of the layers. The ammonium cations are stabilized by hydrogen bonding to the surrounding I atoms.

The structure of $(NH_4)_3[Sb_2I_9]$ resembles that of one modification of its caesium analogue, Cs₃[Sb₂I₉], which crystallizes in space group $P\overline{3}m1$ (Arakcheeva *et al.*, 1999). In the trigonal structure, similar but more regular double layers with identical-membered rings were observed; in the higher symmetry structure, the Cs cations are surrounded by twelve I

atoms. The second modification of Cs₃[Sb₂I₉] was described by Chabot & Parthé (1978) and crystallizes in the hexagonal $Cs_3Cr_2Cl_9$ structure type in space group $P6_3/mmc$, but it shows no topological relation to the title compound.

Experimental

 $(NH_4)_3[Sb_2I_9]$ was obtained by reaction of Sb_2O_3 (10 mmol) and H₂NCN (cyanamide, 30 mmol) in an HI solution (2 M, 60 ml). Prismatic red crystals were grown by slow evaporation at room temperature after several days.

Crystal data

(NH.)-[Sb-L]	$D = 4.016 \mathrm{Mg}\mathrm{m}^{-3}$		
(1114)3[30219]	$D_x = 4.010$ Mg m		
$M_r = 1439.75$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/n$	Cell parameters from 5949		
a = 14.394(3) Å	reflections		
b = 8.0685 (18) Å	$\theta = 1.7-28.4^{\circ}$		
c = 20.505 (5) Å	$\mu = 13.92 \text{ mm}^{-1}$		
$\beta = 90.530 \ (4)^{\circ}$	T = 223 (2) K		
$V = 2381.4 (9) \text{ Å}^3$	Prism, red		
Z = 4	$0.15 \times 0.12 \times 0.10 \text{ mm}$		

Data collection

Bruker SMART APEX CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.151, \ T_{\max} = 0.251$ 31497 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0263P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 6.8306P]
$wR(F^2) = 0.089$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
5949 reflections	$\Delta \rho_{\rm max} = 1.09 \ {\rm e} \ {\rm \AA}^{-3}$
127 parameters	$\Delta \rho_{\rm min} = -0.98 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms not located	

Table 1

Selected geometric parameters (Å, °).

Sb1-I1	2.8556 (8)	Sb2-I8	2.8422 (9)
Sb1-I4	2.8591 (9)	Sb2-I7	2.8602 (9)
Sb1-I2	2.8725 (9)	Sb2-I9	2.8664 (9)
Sb1-I5	3.1579 (10)	Sb2-I5	3.1501 (10)
Sb1-I3 ⁱⁱⁱ	3.1633 (9)	Sb2-I6 ⁱⁱ	3.1865 (9)
Sb1—I3	3.1956 (9)	Sb2—I6	3.2211 (9)
I1-Sb1-I4	94.08 (3)	I7-Sb2-I9	94.32 (3)
I1-Sb1-I2	92.26 (3)	I8-Sb2-I5	89.32 (3)
I4-Sb1-I2	93.42 (3)	I7-Sb2-I5	92.12 (2)
I1-Sb1-I5	92.65 (3)	I9-Sb2-I5	173.14 (3)
I4-Sb1-I5	173.12 (3)	I8-Sb2-I6 ⁱⁱ	90.78 (3)
I2-Sb1-I5	87.74 (2)	I7-Sb2-I6 ⁱⁱ	173.49 (3)
I1-Sb1-I3 ⁱⁱⁱ	88.60 (3)	I9-Sb2-I6 ⁱⁱ	89.90 (2)
I4-Sb1-I3 ⁱⁱⁱ	92.29 (2)	I5-Sb2-I6 ⁱⁱ	83.48 (2)
I2-Sb1-I3 ⁱⁱⁱ	174.15 (3)	I8-Sb2-I6	171.27 (3)
I5-Sb1-I3 ⁱⁱⁱ	86.44 (2)	I7-Sb2-I6	91.94 (2)
I1-Sb1-I3	173.51 (3)	I9-Sb2-I6	93.36 (3)
I4-Sb1-I3	87.33 (3)	I5-Sb2-I6	84.04 (3)
I2-Sb1-I3	93.98 (3)	I6 ⁱⁱ -Sb2-I6	82.85 (2)
I5-Sb1-I3	85.83 (3)	Sb1 ⁱ -I3-Sb1	146.98 (2)
I3 ⁱⁱⁱ -Sb1-I3	85.02 (2)	Sb2-I5-Sb1	151.96 (3)
I8-Sb2-I7	93.98 (3)	Sb2 ^{iv} -I6-Sb2	149.68 (2)
I8-Sb2-I9	92.59 (3)		

Symmetry codes: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $-\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) $-\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z.$

The H positions of the ammonium cations could not be determined. The maximum residual electron density is 1.07 Å from I6, and the minimum electron density is 1.56 Å from Sb1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2002) and *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL97*).

It is a pleasure for HZ to thank DAAD for a scholarship and Mr Kruse for the data collection.

References

- Arakcheeva, A. V., Novikova, M. S., Zaitsev, A. I. & Lubman, G. U. (1999). J. Struct. Chem. 40, 572–579.
- Brandenburg, K. (2001). *DIAMOND*. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chabot, B. & Parthé, E. (1978). Acta Cryst. B34, 645-648.
- Dowty, E. (2002). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.